Model

Show Deprecated

Models are container objects, meaning they group objects together. They are best used to hold collections of BaseParts and have a number of functions that extend their functionality.

Models are intended to represent geometric groupings. If your grouping has no geometric interpretation, for instance a collection of Scripts, use a Folder instead.

Models whose constituent parts are joined together with joints (so that they can move around or be destroyed via physics simulation) usually have a PrimaryPart set, as it specifies which part within the model the pivot and bounding box will "follow" as the model moves. Static models which stay in one place do not benefit from having a primary part set.

Models have a wide range of applications, including Roblox player characters. They also have a number of unique behaviors that are important to keep in mind:

As with all Instance types, the fact that a parent Model is replicated to a client does not guarantee that all its children are replicated. This is particularly important if these instances are being accessed by code running on the client, such as in a LocalScript. Using ModelStreamingMode with values such as Atomic can ensure that the entire model and all of its descendants are present if the parent model exists on the client, or you can use WaitForChild() when atomicity is not desired.

Code Samples

The following sample includes a basic function that takes a table of objects and parents them into a new Model, returning that Model.

Basic Model Instantiation

local function groupObjects(objectTable)
local model = Instance.new("Model")
for _, object in pairs(objectTable) do
object.Parent = model
end
return model
end
local objects = {
Instance.new("Part"),
Instance.new("Part"),
}
groupObjects(objects)

Summary

Properties

Properties inherited from PVInstance

Properties

Methods

Methods inherited from PVInstance

Methods

Properties

Plugin Security
Read Parallel

ModelStreamingMode

Read Parallel

PrimaryPart

Read Parallel

Code Samples

Throwing Dice

-- Create a dice model with two halves and attach them together
local diceModel = Instance.new("Model")
diceModel.Name = "ChanceCube"
local diceTop = Instance.new("Part")
diceTop.Size = Vector3.new(4, 2, 4)
diceTop.Position = Vector3.new(0, 1, 0)
diceTop.Color = Color3.new(0, 0, 1)
diceTop.Parent = diceModel
local diceBottom = diceTop:Clone()
diceBottom.Position = Vector3.new(0, -1, 0)
diceBottom.Color = Color3.new(1, 0, 0)
diceBottom.Parent = diceModel
local weld = Instance.new("WeldConstraint")
weld.Part0 = diceTop
weld.Part1 = diceBottom
weld.Parent = diceModel
-- Put the dice up in the air above the workspace origin (does not require a primary part)
diceModel.Parent = workspace
diceModel:PivotTo(CFrame.new(0, 10, 0))
-- Assign the primary part before physical simulation
-- Without this line, the script will always output the same thing and the bounding box of the model will not change orientation
diceModel.PrimaryPart = diceTop
-- Wait a bit before rolling the dice (let it settle onto the floor)
for i = 5, 1, -1 do
print("Rolling dice in...", i)
task.wait(1)
end
diceTop:ApplyAngularImpulse(Vector3.new(15000, 1000, 5000))
diceTop:ApplyImpulse(Vector3.new(0, 3000, 0))
task.wait(1)
-- Wait for the roll to complete
while diceTop.AssemblyLinearVelocity.Magnitude > 0.1 or diceTop.AssemblyAngularVelocity.Magnitude > 0.1 do
task.wait()
end
-- Get the dice orientation, impacted by the primary part
local orientation = diceModel:GetBoundingBox()
if orientation.YVector.Y > 0.5 then
print("It's the boy!")
else
print("It's his mother!")
end

Scale

Not Replicated
Not Scriptable
Read Parallel

WorldPivot

Not Replicated
Read Parallel

Code Samples

Reset Pivot

local function resetPivot(model)
local boundsCFrame = model:GetBoundingBox()
if model.PrimaryPart then
model.PrimaryPart.PivotOffset = model.PrimaryPart.CFrame:ToObjectSpace(boundsCFrame)
else
model.WorldPivot = boundsCFrame
end
end
resetPivot(script.Parent)

Methods

AddPersistentPlayer

()

Parameters

playerInstance: Player
Default Value: "nil"

Returns

()

GetBoundingBox


Returns

GetExtentsSize


Returns

Code Samples

Model GetExtentsSize

local model = Instance.new("Model")
model.Parent = workspace
local RNG = Random.new()
for _ = 1, 5 do
local part = Instance.new("Part")
part.Anchored = true
part.Size = Vector3.new(RNG:NextNumber(0.05, 5), RNG:NextNumber(0.05, 5), RNG:NextNumber(0.05, 5))
part.Parent = model
end
print(model:GetExtentsSize())

GetPersistentPlayers

Instances

Returns

Instances

GetScale


Returns

Code Samples

Substituting in a replacement model using PivotTo and ScaleTo

local CollectionService = game:GetService("CollectionService")
local ReplicatedStorage = game:GetService("ReplicatedStorage")
-- Find all the models with the tag we want to replace
local items = CollectionService:GetTagged("Tree")
local newModel = ReplicatedStorage.FancyTreeReplacementModel
for _, item in items do
-- Make the new item and scale / position it where the old one was
local newItem = newModel:Clone()
newItem:ScaleTo(item:GetScale())
newItem:PivotTo(item:GetPivot())
-- Add the same tag to the replacement
CollectionService:AddTag(newItem, "Tree")
-- Delete the old item and parent the new one
newItem.Parent = item.Parent
item:Destroy()
end

MoveTo

()

Parameters

position: Vector3

Returns

()

Code Samples

Model MoveTo

local START_POSITION = Vector3.new(-20, 10, 0)
local END_POSITION = Vector3.new(0, 10, 0)
local model = Instance.new("Model")
model.Parent = workspace
local part1 = Instance.new("Part")
part1.Size = Vector3.new(4, 4, 4)
part1.Position = START_POSITION
part1.Anchored = true
part1.BrickColor = BrickColor.new("Bright yellow")
part1.Parent = model
local part2 = Instance.new("Part")
part2.Size = Vector3.new(2, 2, 2)
part2.Position = START_POSITION + Vector3.new(0, 3, 0)
part2.Anchored = true
part2.BrickColor = BrickColor.new("Bright blue")
part2.Parent = model
model.PrimaryPart = part1
model.Parent = workspace
local obstruction = Instance.new("Part")
obstruction.Name = "Obstruction"
obstruction.Size = Vector3.new(10, 10, 10)
obstruction.Position = Vector3.new(0, 10, 0)
obstruction.Anchored = true
obstruction.BrickColor = BrickColor.new("Bright green")
obstruction.Parent = workspace
task.wait(3)
model:MoveTo(END_POSITION)

RemovePersistentPlayer

()

Parameters

playerInstance: Player
Default Value: "nil"

Returns

()

ScaleTo

()

Parameters

newScaleFactor: number

Returns

()

TranslateBy

()

Parameters

delta: Vector3

Returns

()

Code Samples

Model TranslateBy

local START_POSITION = Vector3.new(-20, 10, 0)
local END_POSITION = Vector3.new(0, 10, 0)
local model = Instance.new("Model")
local part1 = Instance.new("Part")
part1.Size = Vector3.new(4, 4, 4)
part1.CFrame = CFrame.new(START_POSITION) * CFrame.Angles(0, math.rad(45), 0)
part1.Anchored = true
part1.BrickColor = BrickColor.new("Bright yellow")
part1.Parent = model
local part2 = Instance.new("Part")
part2.Size = Vector3.new(2, 2, 2)
part2.CFrame = part1.CFrame * CFrame.new(0, 3, 0)
part2.Anchored = true
part2.BrickColor = BrickColor.new("Bright blue")
part2.Parent = model
model.PrimaryPart = part1
model.Parent = workspace
local obstruction = Instance.new("Part")
obstruction.Name = "Obstruction"
obstruction.Size = Vector3.new(10, 10, 10)
obstruction.Position = Vector3.new(0, 10, 0)
obstruction.Transparency = 0.5
obstruction.Anchored = true
obstruction.BrickColor = BrickColor.new("Bright green")
obstruction.Parent = workspace
task.wait(3)
-- use TranslateBy to shift the model into the obstruction
model:TranslateBy(END_POSITION - START_POSITION)

Events